

24th National Award for Excellence

in Energy Management 2023

CANDOR GURGAON ONE REALTY PROJECTS PRIVATE LIMITED

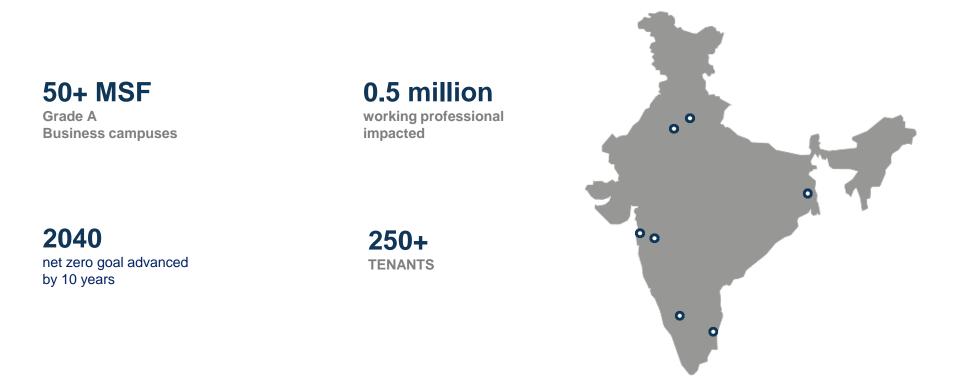
Energy & Sustainability Team

Mr. Baljit Singh (Executive Vice President, India-operations)

Mr. Mukund K. Kumar (Sr. General Manager, ESG & Operations)

Mr. Srijit Mukherjee (General Manager, Energy & Sustainability)

Mr. Raghav Singhal (Manager, Energy & Sustainability)


Mr. Loveneesh Khurana (Manager, Energy)

Brookfield Properties India

CANDOR TechSpace

At Brookfield Properties, We're reimagining real estate through sustainable solutions, and we believe in creating spaces that makes a difference.

Committed to industry-leading sustainable development to deliver long-term value to our business, partners and communities

About

Candor Tech Space, Sector 48, Gurugram is a Grade A office SEZ spread across 25.2 acres. It is strategically located at a prime location with easy access to NH8, fast exit routes to Delhi, and the International Airport.

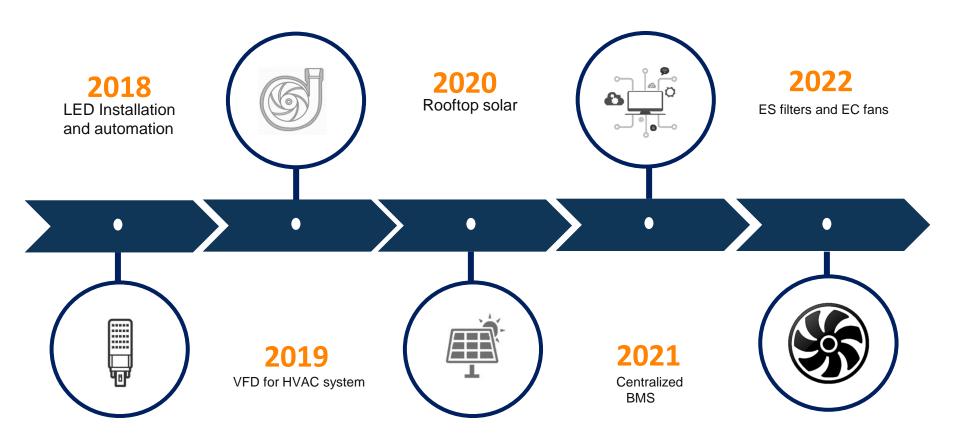
This campus offers **3.7 mil. Sqft.** of office space with a composition of open green spaces, curated breakout zones, pedestrian-friendly walkways and a mix of amenities that include a multi-cuisine food hall, clubhouse, wellness center, and a daycare.

The architecture adheres to international standards of quality with highly efficient floor plates and premium building structures.

Property at a glance

Built in 2012	12 buildings	25.2-acre land area
66 kV power sub-station	469 kWp rooftop solar panels	Barrier-free built environment for universal accessibility
Excellence centre with BMS	100% organic waste recycling through composting	Green landscaped central lawn with sit-outs
Water-efficient landscaping augmented by a drip irrigation system	Sewage treatment plant (STP) with ultra-filtration	Automated RFID Parking System
Zero water discharge campus	Indoor and outdoor sports zone	Fully equipped gymnasium
Electric vehicle charging stations	Medical wellness center and ambulance services	24-hour security, CCTV surveillance and, power back- up

Property at a glance



Energy Conservation/ Efficiency Initiatives Pathway

Through continuous improvements, we ensure that our assets are efficient, resilient and future-fit, and support the needs of our tenants and communities

Energy Initiatives Snapshot

Sustained improvements through defined action program to minimize our energy footprint

Energy

LED Lighting

Centrifugal Chillers Targeted COP 0f 6.3

Demand Controlled Ventilation

90% Space Receives day light > 110 lux

VFD's in Chillers and Pumps

High SRI Roof

MERV 14+ FILTERS

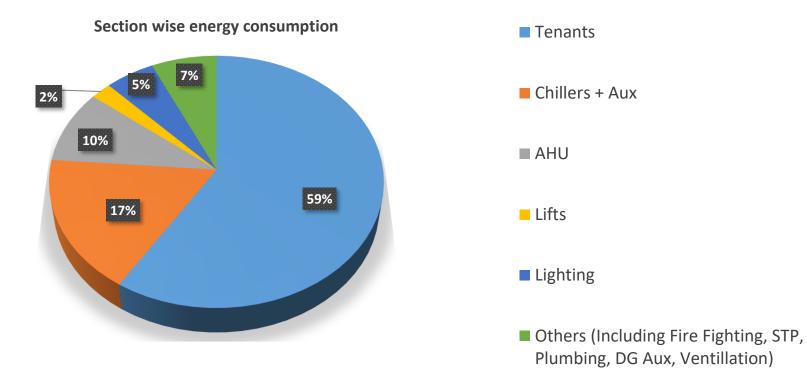
EV Charging Stations

IAQ Monitoring

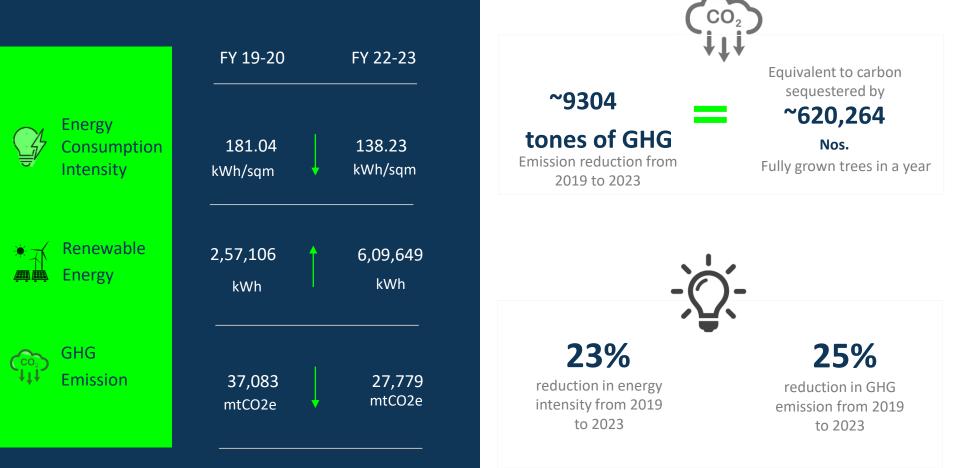
Energy Submetering

BMS Integration

Double Glazing

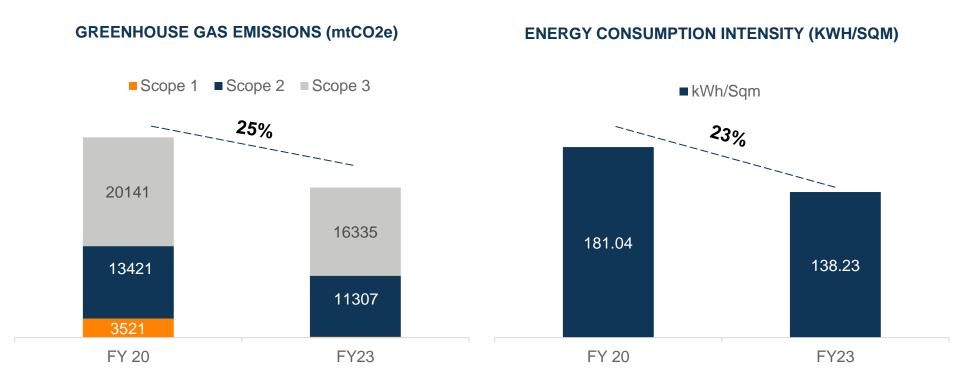

Rooftop solar

Energy Mapping/ Section wise energy consumption


	Energy Share of Major Utilities								
Section	Chillers & Aux	AHUs	Basement	Lifts	Ventilation/				
			Lighting		Others				
Share (%age)	60%	20%	7%	7%	6%				

Parameters	2019-20	2020-21	2022-23							
Energy (MWh)										
Grid	41,270	30,437	30,321	38,932						
DG sets	4,822	277	293	177						
Total Energy	46,092	30,714	30,615	39,110						
	Energy Cost (Million INR)									
Grid	355	282	251	284						
DG sets	51	3	4	4						
Total Energy Cost	406	285	255	288						

Performance Highlights



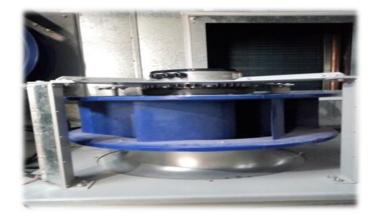
Progress on Net Zero

CANDOR TechSpace

We are actively tracking our emissions and are closely working with all our stakeholders to achieve a Net Zero carbon future by 2040 (or sooner)

Average Annual Hourly EPI (AAhEPI) is **20.5 (Wh/sqm/yr)** for 60% occupancy for 24 hrs./day and 40% occupancy for 12 hrs./day operations.

Year	Major EM Project Implemented	Energy Saving kWh (Lakhs Units)	Cost Savings (Lakhs INR)	Payback (Months)
FY 2019-20	4	224	1983	16
FY 2020-21	4	20	190	20
FY 2021-22	5	23	196	22
FY 2022-23	5	4	35	15


|--|

Year	CO2 Reduction, Tonne
FY 2019-20	17,694
FY 2020-21	1,612
FY 2021-22	1,856
FY 2022-23	309

EC FANS ES FILTERS

- EC motors installed in AHU's to achieve higher energy savings.
- Improvement in quality of air inside the workplace
- Usage of EC motors & fresh air dampers improves on the quality of air as well specific energy consumption of air handling units(AHU).
- Saving of ~ 24000 kWh units per month by using EC motor

SECONDARY PUMP AUTOMATION WITH DECOUPLER VALVE

- Automation of secondary pump for energy efficiency in HVAC system.
- VFD controlled HVAC pumps with auto changeover as per load demand.
- Avoid running of extra pumps by utilizing in better efficiency manner.

CHILLER WITH VFD

- Chilled water system is with VFD regulated with VFD & actuators in AHU's
- Harmonic filters installed for chiller plant to improve power quality
- Operation of chiller plant at less specific energy path
- Centralized HVAC plant improves system efficiency

CENTRALIZED BMS

- All utility equipment's integrated with BMS for better operation controls and monitoring.
- Monitoring energy consumption trend to identify gaps.
- Monitoring and operation control of Chillers, pumps and AHUs.

ROOFTOP SOLAR

- We have rooftop solar renewable Energy Plant Capacity of 469 KWp to reduce use of conventional energy.
- Also, reduction in heat load has been achieved through shadow effect of 4~5 Deg C during day time.
- The average guaranteed unit generation per year is 6,09,649 kWh (approx.) & the average CO2 reduction shall be 4,81,622 Kgs. per annum.
- We are generating ~ 65,614 kWh units per month and using in common area.

VFD FOR WATER PUMPS

- VFD installed for auto operation of Flushing and Domestic pumps based on level feedback.
- Uniform flow of water and improvement in water quality.
- Reduction in customer complaints.
- Increased pump life by avoiding frequent breakdowns.

LED LIGHTS AUTOMATION

- All existing lights in base building are converted to LED lights
- Installed high efficiency with > 115 lumens/watt.
- Installed 3 metres from ground level for better illumination.
- Installed digital timers and occupancy sensors for automation of lighting operation.

BASEMENT EXHAUST INTERGRATION WITH CO SENSOR

- Installed CO sensors at basement parking's for optimum utilization of axial/ exhaust fans.
- Integration of basement exhaust with CO sensor to avoid extra running hours of fans.
- Dual speed exhaust fans for energy savings.

Case Study-1: Centralized Building Management System

Background: The property is with multiple towers and having different OEM based BMS system.

<u>Challenges</u>: Tower-wise energy footprint, heat load and running hours of equipment comparison was not possible.

Proposed System: BMS system from all towers are brought under a single platform.

Advantages of the new system:

•Precise monitoring of operating parameters on a real time basis.

- •Data comparison on hourly, monthly & annual basis
- Fault analysis
- •Indoor IAQ parameters monitored & controlled without time delay.

Cost Benefit Analysis (1 Campus):

Total investment	=	Rs. 54.12 Lacs
Annual electrical energy savings	=	2,96,771 kWh
Annual savings	=	Rs. 26.84 Lacs
Payback	=	24 months

Case Study-2: Automation of AHU Fresh Air Damper w.r.t. IAQ Parameters

Background: The fresh air requirement of the occupant is being catered through air handling units (AHU) at individual floors.

Challenges:

- Optimum balancing of fresh air with IAQ Level and Heat load
- Improper supply of fresh air results in sick building syndrome

<u>**Proposed System:**</u> Flow of fresh air based on air quality monitored inside and outside the building

Advantages of the new system:

- Higher energy savings due to optimal opening of fresh air dampers.
- Higher productivity of occupants because of proper maintaining of IAQ level.

Cost Benefit Analysis (1 Tower):

Total investment	Rs.16.75 Lacs
Annual electrical energy savings	1,36,124 kWh
Annual savings	Rs.11.17 Lacs
Payback	18 months

<u>Background</u>: Individual towers have got dedicated chilled water plants to cater for the HVAC requirement.

Challenges:

•During seasonal variation and weekends all the plants used to operate in part load conditions.

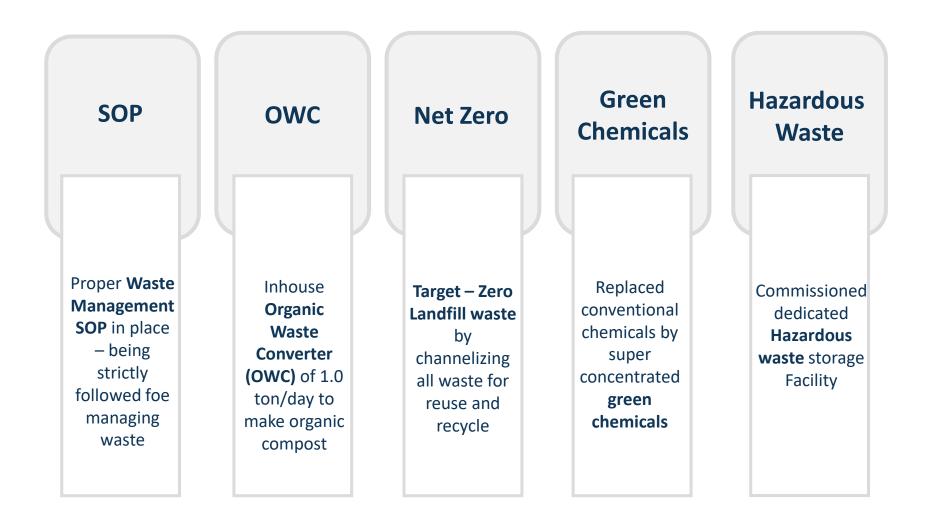
•Excess running hours resulting in higher wear & tear of the equipment.

Proposed System: Individual plant rooms to be inter-connected so that single plant room can supply chilled water to two or more buildings.

Advantages of the new system:

•Optimal loading of chillers, resulting in higher energy saving

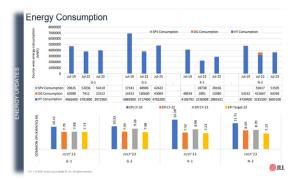
•Run hour, O & M and spares consumption reduced for the receiving plant.


Enhanced redundancy

Cost Benefit Analysis (1 Ring Main):

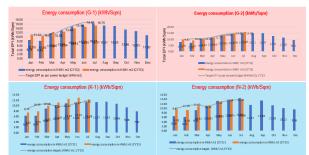
Total investment	=	Rs.31.00 Lacs
Annual electrical energy savings	=	2,51,852 kWh
Annual savings	=	Rs.20.67 Lacs
Payback	=	18 months

Teamwork, Employee involvement and monitoring


BMS System to monitor energy consumption

Resource Advisor Portal to update Energy, water, waste and GHG emission data

Monthly Review of Energy Performance



_	GRAPHICS											al I
HJ Sunnay A	(1 CHIDOD									-		
HJ Summary-B	-									1	Conco	-
HJ Sunnary-C		_	20540	1.40.41	YELLAN	FURNE	# MDATE	4.01.00	9185.00	VIDAR	12 ANS AND	
68 C 16 86		Res Males	9	08	0.	6	04	(#	04	04	0	
HU Summary-D		Ox OH Cammand	Rat	Mat	list.	list1	Hat	Mat	Blatt		List 1	
		AutoMetwall	Auto	Am	Am	Am .	Benadi	Am		Arts	Ante	
HU SUMMAYE		Tang Segue	10.8.444 (111-040-5				111-042	337-046-(LEF reg C	
a construction of the construction of the		Supply As Temp	21.8 deg C	21.0 mg C	254.04g.C	25.8 mg C	25.7 mg-C	21.4 mg C	214.695	211 deg C	25.1 deg C	
		Sampa Ar Tenge	234 Aug C	363.6g/C	252.00gC	ZLAdegC	25.4 deg C	253 dep C	218 mg C	254 seg C	25.7 eleg C	
HJ Summary A		COFLAM	864.0 ppm	942-3 ppm	456.0 ypm	COLUMPS	7%8.4 ppm	104.5 gpm	1,1853 (84	796.7 (6/6	172.0 500	
		Ci/esthes	18.2%	18075	835	1835	UBJA	103.5	1835	1013	10.3 %	
HJ Summarv&		CECONNA			101%		10174	13.5	1825			
no oommayo		1013 Frequency 1013 Medication Feedback	115	47.319	4.214	MIN I	43.5	113	83.94 64%	111 64 HV	1173.419	
		Will fam Name	Land Surgers	Add hours	4.00.00007	2.HLIbara	Lifthurs	1471d hours	6.3m3 hours	TTAI have	177 Ad hours	
HU Summary-C		Schedule	-	-	3	-	-	-	7	-		
HJ Summay-D	1											
HJ Sunnay A												

I Data Entry										Data Drity Configuration
Pockfeld Properties, India & A Hode East Articl Centre	Bervice Cost and Usage	ndex/Adribute Di	ata OHO Reporte	/ Usage						
Alpha, Main St. Hranandari Gardena	Structure - Candor TechSp	ace, Sector (48							
(Poesi Datrict)	Tracked Source		Type		UOM	6	equency	Owner		Show Tracking
Buegress Business Towers (Park City)										
Candor TechSpace. NewTown, Kolkata	Display Let 6 Months •	Outa Steam	s Piezze Select							Download Exce
Candor TechSpace, Sector 135	Service Cost and Usage -	Candor Tech	Space, Sector 48							Hole Open Test
Candor TechSpace, Sector 21	Source	Туре	UCM	Feb 23	Mar 23	Apr 23	May 23	Jun 23	348.23	Total
Cardor TechSpace, Sector 48	Diesel-Electric Power Whole Building	Cest	NR .	322,258	642,303	341,400	204,985	\$1,758	418,794	2,032,505
Candor TechSpace. Sector 52	Diesel-Electric Power Whole Building	Volume	kilih	15,400	35,568	10,378	8.308	1,204	22.612	100,524
CS Park, Cantral Ave (Paresi Datrict)	Electric Power - Common Area	Cost	NR	7,105,795	9.392,700	10,917,147	13.416.725	14,083,058	15,804,500	70,799,915
Cowris - Aerocity	Electric Power - Common Area	Volume	kith	942,415	1,254,032	1,369,780	1,894,031	1,012,459	2,084,580	9,258,297
Counts - Cybersity Counts - Rosworld	Electric Power - Tenant Space (LandlordControlled)	Cost	INR	٠	۲	٠	٠	٠	٠	0
Counts - Oolf Course	Electric Power - Tenant Space (LandlordControlled)	Volume	kith	۲	۲	٠	۲	۲	٠	0
des heche status	Electric Power - Tenant Space (Tenant Controlled)	Cest	NR	13,822,494	15.105.458	15.596.628	15,995,024	14,803,855	14,903,963	90,108,222
lpload Paterto entervour data	Electric Power - Tenant Space (Tenant Controlled)	Volume	kith	1,800,222	2,046,750	1,955,917	2,019,700	1,804,233	1,905,200	11,777,182
into Excel and uplead it all at once? Use our Bulk Uplead templates by	Electric Power - Whole Building	Cost	INR	۲	۲	٠	٠	٠	٠	0
cloking the link below	Electric Power - Whole Building	Volume	kith.	*	*		٠	*	*	0

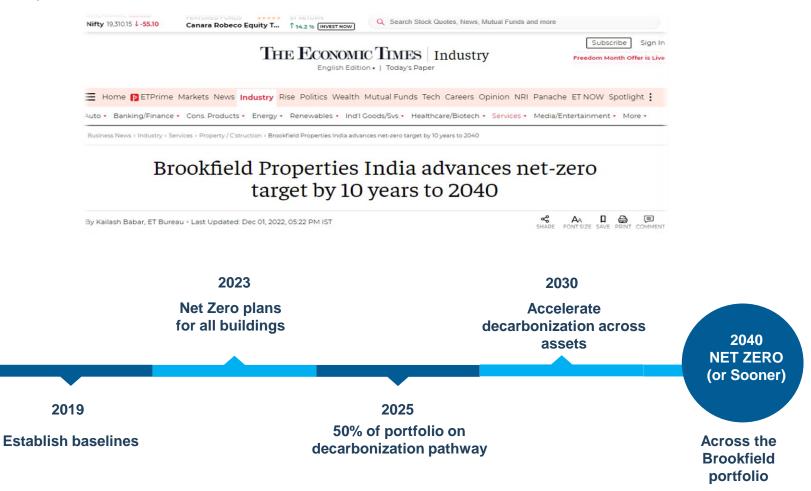
ESG Performance - Energy Consumption Profile (kWh/Sqm)

Training and Awareness Program

Training Gallery

Energy Management Training

Centralized Team of BEE Certified Energy Auditors and Managers for energy management



Committed to industry-leading sustainable development to deliver long-term value to our business, partners and communities

Leader in Sustainable Office Development

Committed to deliver on our Net Zero target by 2040 or sooner.

- Build up towards the nomination process has helped us to recognize and identify projects which has helped our company's excellence in the reduction of energy consumption and innovation.
- Our mission towards use of clean energy and reduction of carbon footprints is helping us scout for new avenues and techniques to resource conservation.
- We appreciate CII for providing this platform to share our experience, implementations and concepts.
- We believe that our efforts to mitigate climate change and prioritizing a circular economy will ensure our sustained growth in the future.

Way Forward

CANDOR TechSpace

- Renewable Energy Programme.
- Installation of Fan less Cooling Towers.
- Chemical less water treatment for Cooling Towers/ EBSR system
- Integration of actuators installed in HVAC ring main system with BMS.
- Demand ventilation control based on AQI parameters.
- Photosensors/ Occupancy sensors.

Thank You

Srijit Mukherjee – General Manager

CANDOR GURGAON ONE REALTY PROJECTS PRIVATE LIMITED Sector-48, GURGAON

Email: srijit.mukherjee@brookfieldproperties.com

srindnukherjeg@brookfielcproperties.com